Research
Security News
Malicious npm Packages Inject SSH Backdoors via Typosquatted Libraries
Socket’s threat research team has detected six malicious npm packages typosquatting popular libraries to insert SSH backdoors.
rsa-compat
Advanced tools
| A Root Project.
JavaScript RSA utils that work on Windows, Mac, and Linux with or without C compiler
This now uses node-native RSA key generation and lightweight, zero-dependency solutions for key conversion.
However, it also optionally depends on ursa
and forge
for backwards compatibility with older node versions.
This was built for the ACME.js and Greenlock.js Let's Encrypt clients and is particularly suitable for building certbot-like clients.
(if you're looking for similar tools in the browser, consider Bluecrypt)
node.js
npm install --save rsa-compat
npm install --global rsa-compat
You can generate keypairs on Windows, Mac, and Linux using rsa-keygen-js:
# generates a new keypair in the current directory
rsa-keypiar-js
Generate an RSA Keypair:
var RSA = require('rsa-compat').RSA;
var options = { bitlen: 2048, exp: 65537, public: true, pem: true, internal: true };
RSA.generateKeypair(options, function (err, keypair) {
console.log(keypair);
});
Here's what the object might look like:
console.log(keypair)
:
{ publicKeyPem: '-----BEGIN RSA PUBLIC KEY-----\n/*base64 pem-encoded string*/'
, privateKeyPem: '-----BEGIN RSA PRIVATE KEY-----\n/*base64 pem-encoded string*/'
, privateKeyJwk: {
kty: "RSA"
, n: '/*base64 modulus n = pq*/'
, e: '/*base64 exponent (usually 65537)*/'
, d: '/*base64 private exponent (d = e^−1 (mod ϕ(n))/'
, p: '/*base64 first prime*/'
, q: '/*base64 second prime*/'
, dp: '/*base64 first exponent for Chinese remainder theorem (dP = d (mod p−1))*/'
, dq: '/*base64 Second exponent, used for CRT (dQ = d (mod q−1))/'
, qi: '/*base64 Coefficient, used for CRT (qinv = q^−1 (mod p))*/'
}
, publicKeyJwk: {
kty: "RSA"
, n: '/*base64 modulus n = pq*/'
, e: '/*base64 exponent (usually 65537)*/'
}
, _ursa: '/*undefined or intermediate ursa object*/'
, _ursaPublic: '/*undefined or intermediate ursa object*/'
, _forge: '/*undefined or intermediate forge object*/'
, _forgePublic: '/*undefined or intermediate forge object*/'
}
NOTE: this object is JSON safe as _ursa and _forge will be ignored
See http://crypto.stackexchange.com/questions/6593/what-data-is-saved-in-rsa-private-key to learn a little more about the meaning of the specific fields in the JWK.
RSA.generateKeypair(options, cb)
RSA.generateKeypair(bitlen, exp, options, cb)
)RSA.import(options)
RSA.import(keypair, options)
)RSA.exportPrivatePem(keypair)
RSA.exportPublicPem(keypair)
RSA.exportPrivateJwk(keypair)
RSA.exportPublicJwk(keypair)
RSA.signJws(keypair, header, protect, payload)
RSA.signJws(keypair, payload, nonce)
)RSA.generateCsrPem(keypair, names)
RSA.generateCsrDerWeb64(keypair, names)
keypair
can be any object with any of these keys publicKeyPem, privateKeyPem, publicKeyJwk, privateKeyJwk
Create a private keypair and export it as PEM, JWK, and/or internal formats
RSA.generateKeypair(null, function (keypair) { /*...*/ });
RSA.generateKeypair({
bitlen: 2048, exp: 65537, pem: false, public: false, internal: false
}, function (keypair) { /*...*/ });
options
:
{ public: false // export public keys
, pem: false // export pems
, jwk: true // export jwks
, internal: false // preserve internal intermediate formats (_ursa, _forge)
, thumbprint: false // JWK sha256 thumbprint
, fingerprint: false // NOT IMPLEMENTED (RSA key fingerprint)
}
Imports keypair as JWKs and internal values _ursa
and _forge
.
var keypair = RSA.import({ type: 'RSA', privateKeyPem: '...' });
console.log(keypair);
{ privateKeyPem: ..., privateKeyJwk: ..., _ursa: ..., _forge: ... }
You put in an object like { privateKeyPem: '...' }
or { publicKeyJwk: {} }
and you get back the keys in the format you requested.
Note:
Example:
var keypair = { privateKeyPem: '...' };
keypair.publicKeyJwk = RSA.exportPublicJwk(keypair);
console.log(keypair);
Generates a signature in JWS format (necessary for certbot/letsencrypt).
var message = "Hello, World!"
var nonce = crypto.randomBytes(16).toString('hex');
var jws = RSA.signJws(keypair, message, nonce);
console.log(jws);
The result looks like this:
{ "header": {
"alg": "RS256",
"jwk": {
"kty": "RSA",
"n": "AMJubTfOtAarnJytLE8fhNsEI8wnpjRvBXGK/Kp0675J10ORzxyMLqzIZF3tcrUkKBrtdc79u4X0GocDUgukpfkY+2UPUS/GxehUYbYrJYWOLkoJWzxn7wfoo9X1JgvBMY6wHQnTKvnzZdkom2FMhGxkLaEUGDSfsNznTTZNBBg9",
"e": "AQAB"
}
},
"protected": "eyJub25jZSI6IjhlZjU2MjRmNWVjOWQzZWYifQ",
"payload": "JLzF1NBNCV3kfbJ5sFaFyX94fJuL2H-IzaoBN-ciiHk",
"signature": "Wb2al5SDyh5gjmkV79MK9m3sfNBBPjntSKor-34BBoGwr6n8qEnBmqB1Y4zbo-5rmvsoPmJsnRlP_hRiUY86zSAQyfbisTGrGBl0IQ7ditpkfYVm0rBWJ8WnYNqYNp8K3qcD7NW72tsy-XoWEjNlz4lWJeRdEG2Nt4CJgnREH4Y"
}
You can generate the CSR in human-readable or binary / base64 formats:
RSA.generateCsrPem(keypair, names)
:
var pem = RSA.generateCsrPem(keypair, [ 'example.com', 'www.example.com' ]);
console.log(pem);
web-safe base64 for certbot/letsencrypt:
RSA.generateCsrDerWeb64(keypair, names)
:
var web64 = RSA.generateCsrDerWeb64(keypair, [ 'example.com', 'www.example.com' ]);
console.log(web64);
In recent versions of node >= v10.12 native RSA key generation is fairly quick for 2048-bit keys (though it may still be too slow for some applications with 4096-bit keys).
In old versions, however, and especially on ARM and/or MIPS procesors, RSA key generation can be very, very slow.
In old node versions ursa
can provide faster key generation, but it must be compiled.
ursa
will not compile for new node versions, but they already include the same openssl bindings anyawy.
npm install --save ursa
Also, if you need Node < v6 support:
npm install --save buffer-v6-polyfill
TL;DR: Use the default values 2048 and 65537 unless you have a really, really good reason to do otherwise.
Various platforms require these values.
Most security experts agree that 4096-bit is no more "secure" than 2048-bit - a fundamental vulnerability in the RSA algorithm which causes 2048 to be broken will most likely also cause 4096 to be broken (i.e. if someone can prove mathematically prove P=NP or a way to predict prime numbers). Also, many platforms only support 2048 bit keys due to the insecurity of 1024-bit keys (which are not 1/2 secure but rather 1/(2^1028) less secure) and the excess computational cost of 4096-bit keys (it's not a 2x increase, it's more like a 2^2048 increase).
As to why 65537 is even optional as a prime exponent or why it matters... no idea, but it does matter.
rsa-compat.js directly includes code from Rasha.js and RSA-CSR.js (also Root projects), retrofitted for rsa-compat.
rsa-compat.js | MPL-2.0 | Terms of Use | Privacy Policy
FAQs
RSA utils that work on Windows, Mac, and Linux with or without C compiler
The npm package rsa-compat receives a total of 3,502 weekly downloads. As such, rsa-compat popularity was classified as popular.
We found that rsa-compat demonstrated a not healthy version release cadence and project activity because the last version was released a year ago. It has 1 open source maintainer collaborating on the project.
Did you know?
Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.
Research
Security News
Socket’s threat research team has detected six malicious npm packages typosquatting popular libraries to insert SSH backdoors.
Security News
MITRE's 2024 CWE Top 25 highlights critical software vulnerabilities like XSS, SQL Injection, and CSRF, reflecting shifts due to a refined ranking methodology.
Security News
In this segment of the Risky Business podcast, Feross Aboukhadijeh and Patrick Gray discuss the challenges of tracking malware discovered in open source softare.